SOLUTION - 016.

On donne 7 entiers naturels a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 . Démontrer qu'on peut en extraire 4 dont la somme est un multiple de 4.

Prenons 3 entiers quelconques. Chacun d'eux est pair ou impair.

Il y a donc parmi eux <u>deux entiers</u> de même parité. Leur somme est paire, donc soit de la forme 4k soit de la forme 4k + 2.

A fortiori, on est sûr de trouver parmi a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 deux entiers disons a_1 , a_2 tels que leur somme soit $S = a_1 + a_2 = 4 k$ ou 4 k + 2.

On recommence avec les 5 entiers restants a_3 , a_4 , a_5 , a_6 , a_7 pour arriver à la conclusion que parmi eux on peut trouver deux entiers disons a_3 , a_4 tels que leur somme soit $S' = a_3 + a_4 = 4 k'$ ou 4 k' + 2.

On termine avec les 3 entiers restants a_5 , a_6 , a_7 pour arriver à la conclusion que parmi eux on peut trouver deux entiers disons a_5 , a_6 tels que leur somme soit S'' = $a_5 + a_6 = 4$ k'' ou 4 k'' + 2.

Enfin, parmi S, S', S'' il y en a deux de même "nature" modulo 4, disons S et S'.

Autrement dit, on a soit S = 4 k et S' = 4 k' soit S = 4 k + 2 et S' = 4 k' + 2.

Dans les deux cas, S + S' est la somme de 4 entiers (parmi ceux proposés), et cette somme est un multiple de 4.